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0 Introduction
@ Electroweak Physics
@ The DY Experiment

e Z Transverse Momentum Spectrum in 1 fb~"
e Photon ID

e Dibosons
@ Zyini b
@ W+ Radiation Amplitude Zero in 1 fo™"
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Electroweak Physics

vor/
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W and Z Production Leads to Rich Physics
@ Essential tests of the Standard Model
@ Higher order physics with Z pr
@ SM structure with dibosons (couplings, radiation amplitude zero)
@ Constraints on Higgs mass through W mass

@ Important backgrounds to many New Phenomena and other
analyses
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The DG Experiment

D@ Detector

@ General purpose high pr
detector

@ Excellent coverage for
electrons (|| < 3.2)

@ Excellent coverage for
muons (|| < 2.0)

@ Hermetic calorimetry for
missing ET measurement

@ 84 institutions from ’
19 countries

@ ~ 600 Physicists
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D@ Detector in a Diagram

D Detector:
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Calorimeter Regions for Electrons

Forward

TN I S S S S [y S S e
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@ Central electrons (Central calorimeter - CC): |5| < 1.1

@ Forward electrons (End Cap calorimeter - EC):
Typically 1.5 < || < 2.5
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Run Il Integrated Luminosity 19 April 2002 - 31 October 2006
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Results are due to excellent performance of the Tevatron
Results shown here are from our 1 fo~' sample
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Efficiency

m Monthly Data Taking Efficiency \ 19 April 2002 - 24 September 2006
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We work hard to make every delivered pb—' count
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W and Z Identification

Leptonic decays are clean low background signatures

W Bosons Z Bosons

@ Highpreoryu @ Two oppositely charged e
@ Missing Et from v or u with high pr
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do/dpt forZ/v* — ete~

q q zZ,v* q g

>~\~ Z,v*

q q g q Z,v*

Z Transverse Momentum

@ Z boson production governed by strong force
@ g annihilation gives no pr to Z

@ BUT, if a gluon is radiated by incoming (anti-)quark, then pr is
generated
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Resummation
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Balazs & Yuan (PRD 52:5558, 1997)

@ Perturbative QCD governs high Z pr

@ For small Z pr, cross section diverges due to soft gluon radiation!

@ Solve with resummation - CSS (Colins, Soper, & Sterman)
formalism

@ Formalism has three free parameters. One of them, go, is
important for Z pr and is an input in some simulations
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Broadening for forward Zs

do/dQr (pb/GeV)

PP > Z°X - e'e X (VS = 1960 GeV)
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@ There may be
additional x dependent
effects not accounted
for by the standard
resummation

@ Add an extra x term to
the resummed form
factor

@ Effect is to broaden the
Z pr distribution for
x <1072

@ W and Higgs too

@ [f effect exists, could be
substantial at the LHC

2006.11.03 12/66



Analysis Goals

@ Test the vector boson production formalism
@ Help to reduce the theory uncertainty (g is essential for precise
W mass measurement)
Notes:
@ Analysis with Z bosons is more precise than with W bosons
@ Have ~ 1 fb~ of data and ~ 5,000 forward Z bosons (|y| > 2)

Deliverables
@ Precision measurement of the Z pr spectrum, do/dpr
@ Experimentally determine g»

@ Verify (or not) broadening of spectrum for forward Z bosons
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Select Z,v* — ete™

@ I|dentify 2 electrons with pr > 25 GeV/c
@ Single electron trigger fired

@ Electrons may be central (CC) || < 1.1

@ ... or forward (EC) 1.5 < || < 3.2

@ If both central (CC-CC), then both must have a track match
°

If one central and one forward (CC-EC) or both forward (EC-EC)
then one must have a track match

@ Invariant mass 70 < Mee < 110 GeV/c?

Yields in 965 + 58 pb~'
CC-CC CC-EC EC-EC Total

23,959 30,344 9,598 63,901
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Efficiencies with Tag and Probe

Use Z — ee to study efficiencies with data

TAG

1D
Shower Shape

Track Match
N\
Track
AN

Shower Shape?
Track Match?
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Efficiencies and Acceptance

Preselection efficiencies:

@ Use tag and probe method; parametrized by electron pr and
pseudorapidity with much looser Z sample

Requirement €CC (%) €EC (%)
Electron ID 99.6+£0.1 99.2+0.1
Spatial Track Match 90.5+0.1 61.5+0.3
Shower Shape 97.1+01 969401

@ Trigger efficiencies range from 96.6% to 99.0%

Signal (Z/+* — e™e~) Monte Carlo
RESBOS(g- is input 0.68 is default) + PHOTOS + D@ Parametrized MC
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Backgrounds

Multijet Di-jet events or EM+jet events (from W+jet or direct )
@ Jets misidentified as electrons
@ Use “bad” (fails shower shape requirement) EM
sample to determine shape of “ee” invariant mass
@ Fit candidate sample to linear combination of this
shape and signal MC

Region Background Fraction

CC-CC 1.30%
CC-EC 8.69%
EC-EC 3.79%

All 4.98%
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Backgrounds continued

Ztotaus Z — 1t — ee +4v
@ Estimate contribution with MC.
@ Expect 16.9 events in 1 fo~!
@ Negligible

Dibosons WW, WZ, W+
@ Generates real electrons or electron+photon (latter is
misidentified as an electron)
@ Estimate contribution with MC
@ Negligible
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Invariant Mass

[ Invariant mass - Z candidates(CCCC) |
=

chi2/ndf=57.53/80

DORun Il Preliminary

— MC+QCD BKG
—— Data
QCD BKG only

I
50 60 70 80 90 100

[ Invariant mass - Z candidates(ECEC) |
=

110 120 130

Invariant mass [GeV]

E r MC+QCD BKG
[ chi2/ndf=95.11/80 —— Data
7oL E== QCD BKG only
e T |
s [
S 800 »
g [ ORun |1 Preliminary
N L
S 600~
2 O°r
g r
e [
2 400—
200
o fomanes
0 60 70 80 90 100 110 120 . 130

Invariant mass [GeV]

Electroweak Ph

[[Invariant mass - Z candidates(CCEC) |
=

I
3
3

chi2/ndf=120.40/80

a
3
3

@
S
S)

Number of Z gandidates / Ggy
g
8
s

1)
S

a
=}
3
T

[[Invariant mass - Z candidates(All) |
=

Run Il Preliminary

0 60 70 80 90 100 110 120 1

— MC+QCD BKG
—— Data

Invariant mass [GeV]

chi2/ndf=99.97/80

3
3
]

o
]
]

S

S
1S)
S}

,Numper of Z candjglates {GeV
8
3

RRRSEAREE

DO|Run 11 Preliminary

MC+QCD BKG

—— Data

L
0 60 70 80 90 100 110 120 1

QCD BKG only

QCD BKG only

Invariant mass [GeV]

2006.11.03

9/66



Pseudorapidity
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Unfolding

To compare with theory, must remove smearing due to detector
resolution effects

@ Use the RUN program (Regularized Unfolding) by Blobel

nputs

o Measured Z pr in the data
e Z pr of all generated signal MC events

e Z pt of all smeared signal MC events (1-to-1 correspondence with
above)

e Spurious Z pt from the multijet background

@ Passes tests for stability and closure
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Systematic Uncertainties

Smearing Energy scale, offset, and resolution
Shift smearing parameters within 10 and note change to
Z pr. < 4%. Most bins < 2%

PDFs Use RESBOS with CTEQ6.1m PDFs. Shift within +1¢0
errors; gives 40 PDFs. Average uncertainly ~ 3%

RUN Use smeared MC as data; do we get back generated MC?
3% for pr < 30 GeV/c and 6% for 30 < pr < 50 GeV/c

e Z pt dependence on Lepton ID efficiencies. Dominated

by difference between data and full GEANT MC. 8%
uncertainty. Under continued study. Largest Uncertainty
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Unfolded Z pr distribution

’ Z boson p_after unfolding ‘
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Unfolded Z pr distribution 965 pb~!

Compared to RESBOS with default g = 0.68

’ Zboson p_after unfolding ‘

Resbos+PHOTOS CTEQ6.1m, no small-x corr

———————— Resbos+PHOTOS CTEQ6.1m, with small-x corr|

° DO Run I data

DO Run Il Preliminary

CO

50
Zp, [GeV]
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Z pt Wrap Up

Accomplished

@ Measured the Z pr spectrum for 965 + 58 pb~' (Preliminary)
@ Compare to RESBOS

In progress:
@ Working to reduce systematics
@ Will extract go (Very important for precise W mass)

@ Will examine Z pr for forward Z bosons to look for broadening at
low x (Very important since if broadening exists for Z, it also exists
for Higgs)
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Improved Photon ID

Photon ID is challenging: absence of track, high multijet background,
no observed high pr photon resonance (like Z — ee).

Improved Photon Identification

@ Extensive studies of efficiencies and backgrounds with Z — ee
data and full GEANT Monte Carlo

@ Extends photon ID to forward region

@ Investigates integration of central and forward preshower
detectors for verification and pointing

@ Automated tools for efficiency and background determination

@ Methodology:

o Treat photons as electrons; use Z — ee to tune selections
Measure photon efficiency with photon + jet MC (for Zv)
Correct for e/~ shower difference with MC

Large data sample makes possible and accurate
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Diboson Physics Introduction

Wr, Zv, WW, WZ, ZZ

Important

@ Opportunity to test cross sections and phonomena predicted by
the SM

@ Direct view of gauge boson “self couplings”
@ New physics would be unambiguous

@ Better understanding of backgrounds to New Phenomena and
Higgs analyses
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Diboson Physics Introduction

@ In past two years, five W&C talks devoted to Dibosons

CDF Waters 11/19/04 All

DY  Diehl 1/28/05 All

DY Askew  6/23/06 Zvy, WW, WZ first evidence (> 30)
CDF Lipeles 10/30/06 WCZ first observation (> 5¢)

DY —This talk— Zy & W with 1 o~
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Boson Self-interactions

Non-Abelian SU(2), x U(1)y gauge symmetry leads to
self-interactions for bosons in the SM

t-channel u-channel s-channel

q Vil q il g Vi

Vo
q Vo | 4 Vo | 4 Va

v . v

@ Each diagram alone violates unitarity. But taken together the
unitarity violation cancels out. Look for effects of this delicate
balance

@ NOTE: SM forbids Z — -y self-interactions at tree level
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Z~y Production

Only via:
Initial State Final State Something Exotic?
Radiation Radiation |
q / q ¢ g 2
Z [y I
/ Z/y - .y
g
.
q 1 B ¢ | )

@ I|dentify via leptonic Z decays + v

@ At /s =1.96 TeV, SM (NLO) predicts*
o(pp — Zy — lly) =42+02pb

*ARey > 0.7, EX > 7 GeV, Mee > 30 GeV/c?
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Z~ Cartoon

EM Cluster
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Z~y Anomalous Couplings

@ Anomalous ZZvy and Zv+ couplings would increase ¢ resulting in
higher Et photons than SM

@ To characterize non-SM couplings, use formalism:
e Assume only Lorentz and gauge invariance
Use eight coupling parameters h1Vm4 where Vis Z or oy
Two are CP violating (i = 1, 2) and two are CP conserving (i = 3, 4)

Ensure unitarity with form factort

e In SM, all couplings here are zero

* /3 is parton center-of-mass energy, A is form factor scale, and n; is form factor
power = 3 or 4
A. Lyon (FNAL/CD/D@) Electroweak Physics at D& 2006.11.03 32/66



Zv Analysis Goals

@ Test standard model ZZvy and Zvy predictions
@ Look for non-SM effects

@ Look for exotic physics in Zy mass spectrum
@ Use 1 b~ data

Deliverables
@ Measure c(pp — Zy — (L)
@ Compare with standard model and discover AC or set limits
@ Measure My, spectrum and look for resonances
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Previous DG analyses

300 pb~ results previously published:

o + AC limits Bump hunt for scalars

@ PRL 95, 051802 (2005) @ PLB 641, 415 (2006)
@ Examined 290 ¢{+y events @ No statistically significant
@ o(lly) = excess for X — Zvy

42+04+0.3pb

@ Compare to NLO SM
3.9793 pb
(EY > 8 GeV here)

@ AC Limits for A =1 TeV

N

. DB 0.3 fb”

—=—— |y Candidates

Ity SM expected

zassense SM + Scalar (6 xB =1pb
M=130 GeV/c?)

3

Events/(10 GeVic?)
-]
i
+

6 il

Pyl

h%, < 0.23 hZ, < 0.020 ﬁlﬁ%ﬁ |

h), <0.23 hj; <0.019 o-

100 150 200 250 300 350
My, (GeVic®)
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1 fo~1 Z+ analysis

Use ee channel in 1026 +61.6 pb~' of data

Select Z bosons
@ Require two identified electrons

@ One must be in CC |y| < 1.1, other may be in CC or
EC (1.5 < |y] < 25)

@ One must have pr > 25 GeV/c, other > 15 GeV/c
@ Both must match to a track

@ Single electron trigger fired

@ Mg > 30 GeV/c?

CC-CC CC-EC
Yield (events) 40,513 27,521
Efficiency (723+21)% (54.7+3.0)%
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Zvy Photon ID 1026 pb~

@ Isolated EM shower in

CC (jy| <1.1) -
@ No nearby track on § "
photon candidate path s
@ > 96% of energy in EM ol Photon ID Efficiency
calorimeter layers i B
@ pr >7GeVic 7
@ Not near either 0l
electron, ARe, > 0.7, ol
AR:\/W ()F”Hs‘o‘ﬁod”is‘o“zod‘25‘0”‘30

p; [GeV/c]

@ > 90% efficient for high
pr photons, 53% at

7 GeV/c CC-CC CC-EC Total

Zvy Yield 256 131 387
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Z~y Backgrounds

@ Z + jets where a jet is misidentified as
an electron is the only non-negligible
background

@ Measure mis-identification rate using
multijet sample (jet triggered)

@ mis-id rate is rate that EM-like objects
pass photon selection

Photon Misidentification Rate

D@ Run II Preliminary

Fake rate
e
bre
o

@ Remove contamination by real
photons (with photon purity from MC) »

@ Normalize by number of very loose P e s f‘:sewj]°
photon candidates in Z boson sample '
to number in multijet sample.

CC-CC CC-EC Total
Bkg 183£3.0+29 148+25+22 33.1+64
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Zv Signal Simulation

D@ Run II Preliminary

{07 —e— Zy NLO k-factor, =0 and hj;=0

@ Use Baur Leading Order Zv
generator (has ISR, FSR and
Drell-Yan)

@ But NLO is important; use i e

Baur NLO generator with just 14| W,
s 1%

ISR to determine k correction I | ee TR
factor - il

@ Then use parametrized MC to
determine acceptance and A

P R S N R SN
reconstruction efficiencies 0 50 100 150 200
(8 [GeV/c]

NLO/Born
—
o

*

»

CcC-CC CC-EC
exA 0.053+£0.003 0.023 & 0.002¢tat+sys
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Zv Results 1026 pb~!

@ SM Predicts 327.3 + 19.5 events Zy — eey
@ 33.1 + 6.4 events background from Z+jet

@ SM + Bkg = 360.4 + 20.6 events

@ We observe 387 Zy — eey events

4 3 e — 3 e —
%10 D Run Il Preliminary E:m f (@) D@ Run Il Preliminary ;:10 E (b) DY Run Il Preliminary
210°F —e— ey a [ ——eey & o[ ——eey

h oo 107 B aco 107 £2QCD

10°F o SMeey +QCD 107 — SM eey + QCD 107 SMeey +QCD
10 3 3
18 e l
107E g g
107¢ 107¢
102 F F

10° I | 2 L I ! A I 102 L I I | I
100 200 300 107 100 200 300 400 500 1070 100 200 300 400 500
E} (GeV/c) M, (GeVic?) M,., (GeVic?)
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Zy Processes Seen

o D& Run Il Preliminary
> -
é i ISR . 2
=~ o
E$ oo :\;&
NS
- O&
107
: o eey
- 1026 pb™!
oo | 1 L L

10°
M,. (GeV/c?)
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Zv Cross Section and Wrap Up ~ PRELIMINARY

Combined CC-CC/CC-EC cross section for 1026 + 61.6 pb~*

o x BR(Zy — eey) = 4.51 + 0.3ttt sys & 0.271um pb*

NLO Prediction is ¢ x BR(Zy — eey) = 4.2+ 0.2 pb

For EY > 7 GeV, AR, > 0.7, Mge > 30 GeV/c?

To do:
@ Add muon channel
@ Set limits on ZZ+y and Z++ anomalous couplings
@ Bump hunt with 1 b~

* This approved preliminary result uses the old luminosity constant. Result being prepared for publication uses the new
luminosity constant.
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W+ Introduction

@ Direct look at WW+y coupling

e For W+ production, only WW+ couplings are visible
e For WZ, only WWZ couplings
o For WW both are visible and their relation is an assumption (LEP)

@ Test Standard Model

@ Unambiguous signs for new physics (higher cross section, higher
Et spectra)

@ Perhaps measure anomalous electric and magnetic moments of
W boson

@ Standard Model Predicts a Radiation Amplitude Zero not yet
observed (described in detail in a few slides ahead)
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WW+ Anomalous Couplings

Use effective Lagrangian formalism:

A
LWW’y = —ie (W;.VW‘MAV — W‘:"AVWVV) + K,)/W;WVFVV + ]V‘[zwzluwﬁpv)\]
w

@ First term: minimal coupling of o and W; fixed by W charge
@ Second term: x and A relate to electromagnetic moments

Inthe SM: x, =1and A, =0

Physical quantities

These couplings are related to physical W boson properties

Moment Full form SM Value
Magnetic Dipole uw =e(1+x,+A,)/2My  e/My
Electric Quadrupole o =—e(x,—Ay)/M3,  —e/M;,
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Boson Self-interactions

Non-Abelian SU(2), x U(1)y gauge symmetry leads to
self-interactions for bosons in the SM

t-channel u-channel s-channel

q Vil q il g Vi

Vo
q Vo | 4 Vo | 4 Va

v . v

@ Each diagram alone violates unitarity. But taken together the
unitarity violation cancels out. Look for effects of this delicate
balance

@ NOTE: SM forbids Z — -y self-interactions at tree level
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W+ Radiation Amplitude Zero

The balance of the three diagrams in the SM leads to destructive
interference

@ Manifests as a zero in the w
angle distribution between the
photon and the incoming

quark in the center of mass ; : —
frame . o . 1

@ cos(0*) = £1/3 where + is

for W—
8

@ But the unknown v direction makes cos(6*) ambiguous

@ Fortunately, the W and -y directions are correlated, and so the
lepton from the W and the -y directions are correlated

@ Measure instead the charge-signed rapidity difference

@ Inthe SM, sign(¢)[y(y) —y(¢)] ~ —0.3
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Radiation Amplitude Zero Continued

0.022

o
S
S 002

Standard Model MC

@
E 0.018 Anomalous Coupling MC: k=-1,A=0

30.016

0.014 D@ Preliminary, 900 pb'1
0.012

0.01
0.008
0.006
0.004

0.002
P |

L Y B
(Lepton Charge)*(nv—ql)

o \H‘H\‘\\\‘\H‘\H‘H\‘\H‘H\‘\H“H“H

e with E, > 7 GeV, AR,., > 0.7, Three body mass > 110 GeV/c? to
reduce FSR

@ Integral of curves normalized to their expected cross sections with
respect to the SM, which is set to unity
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More Radiation Amplitude Zero Continued

Never before observed

Potential spoilers of RAZ

@ Final state radiation has no radiation amplitude zero; fills in dip
(Our requirements minimize FSR)
@ Other SM backgrounds do not have RAZ; fill in dip
(Keep background small)
@ NLO effects reduces the correlation between the lepton and the
photon; fills in dip
(Not a big problem here; but makes W+ more difficult at LHC)
@ Anomalous couplings reduce or eliminate balance; fills in or
eliminates dip
(New Physics! Woohoo!)
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W+ Analysis Goals

@ Use the e and u decays of the W in the 1 fb~" data
@ (Hadronic channel is swamped by multijet background)
@ Use forward photons for best acceptance

Deliverables
@ Investigate Radiation Amplitude Zero
@ Measure W+ Cross Section
@ Discover or set limits on anomalous couplings

A. Lyon (FNAL/CD/D@) Electroweak Physics at D& 2006.11.03 48 /66



W+ Event Selection

@ Select identified isolated @ Select identified muon
electron with isolated in calorimeter and
pr > 25 GeV/c tracker with pr > 20 GeV/c

@ Electron may be in @ Missing ET > 20 GeV

CC (|n] <1.1)or

@ No additional muons or
EC (1.5 < |y| <25)

tracks with pr > 15 GeV/c
@ Electron must be matched o Event must pass a single

to a track muon trigger
@ Missing ET > 25 GeV )

@ Event must pass a single
electron trigger
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More Requirements

Photon ID

@ Photon may be central
(CC) or forward (EC)

® £l >7GeV

@ Photon is isolated in
calorimeter and tracker

@ Shower shape is
consistent with EM object

@ Photon has an associated
cluster in a preshower
detector

@ Photon and lepton must be
separated AR > 0.7

@ To reduce FSR,
My > 110 GeV/c?

@ To further reduce FSR,
Mz (ev) > 50 GeV/c?

@ Toreduce Z — ee,
89 < M, < 99 GeV/c?

@ Optimized for minimal
fractional uncertainty on
signal

e Asymmetric - W+ has
more events below Mz
than above
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D@ Detector in a Diagram
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More Requirements

Photon ID

@ Photon may be central
(CC) or forward (EC)

® £l >7GeV

@ Photon is isolated in
calorimeter and tracker

@ Shower shape is
consistent with EM object

@ Photon has an associated
cluster in a preshower
detector

@ Photon and lepton must be
separated AR > 0.7

@ To reduce FSR,
My > 110 GeV/c?

@ To further reduce FSR,
Mr(ev) > 50 GeV/c?

@ Toreduce Z — ee,
89 < Mg, < 99 GeV/c?

@ Optimized for minimal
fractional uncertainty on
signal

o Asymmetric - W+ has
more events below Mz
than above
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Efficiencies and Acceptances

@ Efficiency of ID requirements for e, u determined by Z — ee data
with tag and probe method

@ Acceptance (W+ passing kinematic and geometric requirements)
determined by ...
e Baur LO MC with k factor for NLO and Pythia to determine initial

boost.
o Parametrized MC used for smearing

@ Difficult to calculate -y efficiencies from data
o Use full GEANT MC with data minbias overlay
o Isolation and EM fraction for low energy y affected by ambient
calorimeter energy. Ambient energy in Z — ee data agrees well
with GEANT
e but...
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Using Z+y for Photon ID efficiency

@ No easy handle for low energy -y reconstruction efficiency, but. ..
@ Use Zv FSR events for photons with Et < 25 GeV
@ For Et > 25 GeV, use GEANT and scale with Z — ee data/MC
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Backgrounds

L'Tfrnm
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@ Jet misid as @ e misid as
@ Dominant background in @ Significant in e channel
both channels (Z — ee)
@ Estimated with data @ Estimated with data
@ S/B~1 .
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Backgrounds Continued
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@ Missing or mismeasured @ Estimated with MC
lepton )
@ Significant in muon
channel
@ Estimated with MC
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W+ Results PRELIMINARY

| # channel | e channel
Luminosity 878 pb~! 933 pb~T
exA 0.046 +0.003 0.071 +0.007
Candidate Events 245 389
W + jet Bkg 98 + 12 148 + 17statrsys
leX Bkg 6+2 34 + 4gyatisys
T Bkg 26+0.4 I ESIQIo -
Zy 8+1
Expected Signal 130+9 211 +£14
Measured Signal 130 +18 205+ 26

Measured o x BR (pb) | 3.21 £ 0.49 +0.20 | 3.12 £ 0.49atrsy5 + 0.19um

Note: SM ¢ x BR = 3.21 + 0.08ppf pb
with respect to EJ > 7 GeV, AR, > 0.7, and Mys > 90 GeV
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Photon Et 900 pb~' PRELIMINARY

| Combined Channel
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Rapidity Difference 900 pb~' PRELIMINARY
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Rapidity Difference 900 pb~' PRELIMINARY
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@ Distribution is consistent with SM (x*> = 16/12 DOF)
@ Shape is indicative of destructive interference from RAZ
@ Do we see the Radiation Amplitude Zero? Quantify...
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Quantifying the dip

Shapo Tes!

@ Compare data shape to an @ Measure statistical
alternative hypothesis significance of observed
@ )2 test of the normalized dip
distributions @ Compare number of
@ Alternative hypothesis is candidates in dip to
AC WW+ coupling number in peak
k=—-1,A=0 @ Addresses if dipis a
dipole moment »
@ Rapidity difference is
dipless (unimodal)
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Shape Test 900 pb~' PRELIMINARY

Float Normalization Fixed Normalization

g12or s [
~ C ®  Background Subtracted Data H ~ C ®  Background Subtracted Data H
s [ S s [ o
2100 Standard Model MC = 21001 Standard Model MC =
g0 =~ £k =~
z Anomalous Goupling MG (x=-1,=0)| 4 zr Anomalous Goupling MG (x=-1,=0) 2
. ° o
80— e 80— S
|- @ - @
g £ g H
60— El 60— El
E @ F '}
L = r £
40— S 40— K
E i r 2
20— i 20— A
E @ C ]
4 @
] ic 0 ic

@ Normalization is allowed to @ Normalization fixed by
float (not really fair) cross sections

@ Unimodal hypothesis is @ AC enhances o(Wv)
consistent with data at @ This hypothesis fits at
x? =9/11 DOF x? = 55/12 DOF
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Shape Test 900 pb~' PRELIMINARY

@ Determine probability that
dip is a statistical
fluctuation

@ Use three bins

e 1: sample small peak
e 2: sample dip
e 3: sample big peak

@ Measure Ry = Ngip/ Nsmai, R2 = Nip / Npig
@ Then by definition, if Ry and R> < 1 there is a depletion of events
in the expected region

@ Use SM MC to find bin breaks (expected positions of dip and
peaks)
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Shape Test 900 pb~' PRELIMINARY

@ Probability of no dip =
Prob(Ry > 1o0or R > 1)

@ From the data (DJ ?fiii —
PRELIMINARY) Groo
Ry = 0.841 £ 0.117 o
R, = 0.508 4+ 0.064 ‘:Z: —t—

@ Assuming Gaussian errors, o
the dipless hypothesis is et eees oo
ruled out at 90% C.L. TR ey

Also used a standard statistical method* that is binless. Consistent
with these results.

1J.A. Hartigan and PM Hartigan, “The Dip Test of Unimodality”, Annals of Statistics
13, 70-84 (1985)
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W+ Wrap Up 900 pb—' PRELIMINARY

Accomplished

@ Observed W+ final state. Production rate consistent with SM
@ Measured the W+ charge signed rapidity difference

o Consistent with SM

e Shape is indicative of the Radiation Amplitude Zero with unimodal
hypothesis ruled out at 90% C.L.

o Will be able to make stronger statements with more luminosity

@ To do: Use charge signed rapidity difference and photon Et
spectrum to set limits on WW+ AC couplings
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SUMMARY

@ Electroweak Physics is extremely interesting and important
@ With 1 fb~
o Measured Z pr (resummation, g»)

e Measured o(pp — Zy — eevy). Agrees with SM

o Measured charge signed rapidity difference in W+. Agrees with
SM. First investigation of Radiation Amplitude Zero

@ More data to look at

@ More results ahead
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